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Abstract

This document constitutes the technical reference manual of the Conic
Benchmark Format (version 2) with file extension .cbf or .CBF. This
storage format unifies linear, second-order cone, exponential cone and
semidefinite cone optimization with mixed-integer variables. The format
has been designed with benchmark libraries in mind, and therefore focuses
on compact and easily parsable representations. The problem structure
is separated from data, and the format moreover facilitate benchmarking
of hotstart capability through a sequence of incremental changes.
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1 Minimal working example

The conic optimization problem (1), has three variables in a quadratic cone Q3 -
first one is integer - and an affine expression in domain {0} (equality constraint).

minimize 5.1x0

subject to 6.2x1 + 7.3x2 − 8.4 ∈ {0}
x ∈ Q3, x0 ∈ Z.

(1)

Its formulation in the Conic Benchmark Format begins with the version of the
CBF format used, to safeguard against later revisions.

VER

2

Next follows the problem structure, consisting of the objective sense, the number
and domain of variables, the indices of integer variables, and the number and
domain of scalar-valued affine expressions (i.e., the equality constraint).

OBJSENSE

MIN

VAR

3 1

Q 3

INT

1

0

CON

1 1

L= 1

Finally follows the problem data, consisting of the coefficients of the objective,
the coefficients of the constraints, and the constant terms of the constraints. All
data is specified on a sparse coordinate form.

OBJACOORD

1

0 5.1

ACOORD

2

0 1 6.2

0 2 7.3

BCOORD

1

0 -8.4

This concludes the example! Please see Section 2 and Section 3 for details about
the document structure and use of keywords.
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2 The structure of CBF files

This section defines how information is written in the CBF format, without
being specific about the type of information being communicated.

2.1 Information items

The format is composed as a list of information items. The first line of an
information item is the KEYWORD, revealing the type of information provided.
The second line - of some keywords only - is the HEADER, typically revealing the
size of information that follows. The remaining lines are the BODY holding the
actual information to be specified.

KEYWORD

BODY

KEYWORD

HEADER

BODY

The KEYWORD specifies how of each line in the HEADER and BODY is structured.
Moreover, the number of lines in the BODY is decidable either from the KEYWORD,
the HEADER, or from another information item required to precede it.

2.2 Information groups and their ordering

All information items belong to exactly one of the three groups of information.
These information groups, and the order they must appear in, is:

1. File format.

2. Problem structure.

3. Problem data.

The first group, file format, provides information on how to interpret the file. It
is currently limited to the keyword VER, specifying the version of the CBF format
in use. The second group, problem structure, provides the information needed
to deduce the type and size of the problem instance. Finally, the third group,
problem data, specifies the coefficients and constants of the problem instance.

2.3 Embedded hotstart-sequences

A sequence of problem instances, based on the same problem structure, is
allowed within a single file. This is facilitated via the CHANGE keyword used
within the problem data information group, as a separator between the in-
formation items of each instance. The information items following a CHANGE

keyword is appending to, or changing (e.g., setting coefficients back to their
default value of zero), the problem data of the preceding instance.
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The sequence is intended for benchmarking of hotstart capability, where
the solvers can reuse their internal state and solution (subject to the achieved
accuracy) as warmpoint for the succeeding instance. Whenever this feature is
unsupported or undesired, the keyword CHANGE should be interpreted as the end
of file.

2.4 File encoding and line width restrictions

The format is based on the US-ASCII printable character set with two exten-
sions as listed below. Note, by definition, that none of these extensions can be
misinterpreted as printable US-ASCII characters:

• A line feed marks the end of a line, carriage returns are ignored.

• Comment-lines may contain unicode characters in UTF-8 encoding.

The line width is restricted to 512 bytes, with 3 bytes reserved for the potential
carriage return, line feed and null-terminator.

Integers and floating point numbers must follow the ISO C decimal string rep-
resentation in the standard “C” locale. The format does not impose restrictions
on the magnitude of, or number of significant digits in, numeric data, but the
use of 64-bit integers and 64-bit IEEE 754 floating point numbers should be
sufficient to avoid loss of precision.

2.5 Comment-line and whitespace rules

The format allows single-line comments respecting the following rule:

• Lines having first byte equal to ’#’ (US-ASCII 35) are comments, and
should be ignored. Comments are only allowed between information items.

Given that a line is not a comment-line, whitespace characters should be handled
according to the following rules:

• Leading and trailing whitespace characters should be ignored.

• The seperator between multiple pieces of information on one line, is either
one or more whitespace characters.

• Lines containing only whitespace characters are empty, and should be
ignored. Empty lines are only allowed between information items.
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3 How instances are specified

This section defines the spectrum of conic optimization problems that can be
formulated in terms of the keywords of the CBF format.

3.1 Problem structure

Conic optimization problems consist of variables, constraints and one objective
function. In the CBF format, these are defined as follows.

• Variables are either scalar-valued (part of a vector restricted to a cone),
or matrix-valued (restricted to be symmetric positive semidefinite). These
are refered to as the scalar variables, xj for j ∈ J , and PSD variables,
Xj for j ∈ J PSD. Only scalar variables can be integer.

• Constraints are affine expressions of the variables, either scalar-valued
(part of a vector restricted to a cone), or matrix-valued (restricted to be
symmetric positive semidefinite). These are thus refered to as the scalar
constraints, with affine expressions gi for i ∈ I, and PSD constraints, with
affine expressions Gi for i ∈ IPSD.

• The objective is a scalar-valued affine expression of the variables, either
to be minimized or maximized. We refer to this expression as gobj .

The problem structure defines the objective sense, whether it is minimization
and maximization, using the keyword OBJSENSE (follow the hyperlink or see
Appendix B). It also defines the index sets, J , J PSD, I and IPSD, which are
all numbered from zero, {0, 1, . . .}, and empty until explicitly constructed.

• Scalar variables are constructed in vectors restricted to a conic domain,
such as (x0, x1) ∈ R2

+, (x2, x3, x4) ∈ Q3, etc. In terms of the Cartesian
product, this generalizes to x ∈ Kn1

1 ×Kn2
2 ×· · ·×Knk

k , which in the CBF
format becomes

VAR

n k

K1 n1

K2 n2

...

Kk nk

where n is the total number of scalar variables. The list of supported cones
is found in Appendix A. Integrality of scalar variables can be specified
afterwards, as in the minimal working example of Section 1, using the
keyword INT (follow the hyperlink or see Appendix B).

• PSD variables are constructed one-by-one. That is, Xj � 0nj×nj for
j ∈ J PSD, construct matrix-valued variables of size nj × nj restricted
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to be symmetric positive semidefinite. In the CBF format, this list of
constructions becomes

PSDVAR

N

n1

n2

...

nN

where N is the total number of PSD variables.

• Scalar constraints are constructed in vectors restricted to a conic domain,
such as (g0, g1) ∈ R2

+, (g2, g3, g4) ∈ Q3, etc. In terms of the Cartesian
product, this generalizes to g ∈ Km1

1 × Km2
2 × · · · × Kmk

k , which in the
CBF format becomes

CON

m k

K1 m1

K2 m2

...

Kk mk

where m is the total number of scalar constraints. The list of supported
cones is found in Appendix A.

• PSD constraints are constructed one-by-one. That is, Gi � 0mi×mi for
i ∈ IPSD, construct matrix-valued affine expressions of size mi × mi

restricted to be symmetric positive semidefinite. In the CBF format, this
list of constructions becomes

PSDCON

M

m1

m2

...

mM

where M is the total number of PSD constraints.

With the objective sense, variables (with integer indications) and constraints,
the definitions of the many affine expressions follow in problem data.

Keywords covered in this section:
OBJSENSE - Define the objective sense.
VAR - Construct the scalar variables.
INT - Put integer requirements on a selected subset of scalar variables.
PSDVAR - Construct the PSD variables.
CON - Construct the scalar constraints.
PSDCON - Construct the PSD constraints.
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3.2 Problem data

The problem data defines the coefficients and constants of the affine expressions
of the problem instance. These are considered zero until explicitly defined,
implying that instances with no keywords from this information group are, in
fact, valid. Duplicated or conflicting information is a failure to comply with
the standard. Consequently, two coefficients written to the same position in a
matrix (or to transposed positions in a symmetric matrix) is an error.

The affine expressions of the objective, gobj , of the scalar constraints, gi, and
of the PSD constraints, Gi, are defined separately. The following notation uses
the standard trace inner product for matrices, 〈X,Y 〉 =

∑
i,j XijYij .

• The affine expression of the objective is defined as

gobj =
∑

j∈JPSD

〈F obj
j , Xj〉+

∑
j∈J

aobjj xj + bobj ,

in terms of the symmetric matrices, F obj
j , and scalars, aobjj and bobj .

These are specified on a sparse coordinate form using keywords OBJFCOORD,
OBJACOORD, OBJBCOORD (follow the hyperlinks or see Appendix B).

• The affine expressions of the scalar constraints are defined, for i ∈ I, as

gi =
∑

j∈JPSD

〈Fij , Xj〉+
∑
j∈J

aijxj + bi,

in terms of the symmetric matrices, Fij , and scalars, aij and bi. These
are specified on a sparse coordinate form using keywords FCOORD, ACOORD,
and BCOORD (follow the hyperlinks or see Appendix B).

• The affine expressions of the PSD constraints are defined, for i ∈ IPSD,
as

Gi =
∑
j∈J

xjHij + Di,

in terms of the symmetric matrices, Hij and Di. These are specified on
a sparse coordinate form using keywords HCOORD and DCOORD (follow the
hyperlinks or see Appendix B).

Keywords covered in this section:
OBJFCOORD - Define the affine expression of the objective.
OBJACOORD

OBJBCOORD

FCOORD - Define the affine expressions of the scalar constraints.
ACOORD

BCOORD

HCOORD - Define the affine expressions of the PSD constraints.
DCOORD
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A List of cones

The format uses an explicit syntax for symmetric positive semidefinite cones
as shown in Section 3.1. For scalar variables and constraints, constructed in
vectors, the supported conic domains and their minimum sizes are given as
follows.

• Free domain

CBF name F : A cone in the linear family defined by

{x ∈ Rn}, for n ≥ 1.

• Positive orthant

CBF name L+ : A cone in the linear family defined by

{x ∈ Rn | xj ≥ 0 for j = 1, . . . , n}, for n ≥ 1.

• Negative orthant

CBF name L- : A cone in the linear family defined by

{x ∈ Rn | xj ≤ 0 for j = 1, . . . , n}, for n ≥ 1.

• Fixpoint zero

CBF name L= : A cone in the linear family defined by

{x ∈ Rn | xj = 0 for j = 1, . . . , n}, for n ≥ 1.

• Quadratic cone

CBF name Q : A cone in the second-order cone family defined by{(
p
x

)
∈ R× Rn−1 | p2 ≥ xTx, p ≥ 0

}
, for n ≥ 2.

• Rotated quadratic cone

CBF name QR : A cone in the second-order cone family defined by
 p

q
x

 ∈ R× R× Rn−2 | 2pq ≥ xTx, p ≥ 0, q ≥ 0

 , for n ≥ 2.

• Exponential cone

CBF name EXP : A cone in the exponential cone family defined by

cl


 p

y
x

 ∈ R3 | p ≥ y exp

(
x

y

)
, y > 0

 ,
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with a closure operation adding the frontier of points
 p

y
x

 ∈ R3 | p ≥ 0, y = 0, x ≤ 0

 .

• Dual exponential cone

CBF name EXP* : A cone in the exponential cone family defined by

cl


 p

x
y

 ∈ R3 | exp(1) p ≥ (−y) exp

(
−x
−y

)
, −y > 0

 .
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B List of keywords

All keywords are case sensitive and may not appear more than once in any
instance specification. In summary, by information group, they are given as:

• File format

VER

• Problem structure

OBJSENSE, PSDVAR, VAR, INT, PSDCON, CON

• Problem data

OBJFCOORD, OBJACOORD, OBJBCOORD
FCOORD, ACOORD, BCOORD
HCOORD, DCOORD
CHANGE

The information groups must be ordered as specified in Section 2.2. All key-
words, and their ordering within their information group, are optional unless
explicitly stated as a remark to the respective keyword.

VER
The version of the Conic Benchmark Format used to write the file.

HEADER None.

BODY One line formatted as:
INT

This is the version number.

Remarks:
Must appear exactly once in a file, as the first keyword.

OBJSENSE
Define the objective sense.

HEADER None.

BODY One line formatted as:
STR

Having MIN indicates minimize, and MAX indicates maximize.
Capital letters are required.

Remarks:
Must appear exactly once in a file.
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PSDVAR

Construct the PSD variables.

HEADER One line formatted as:
INT

This is the number of PSD variables in the problem.

BODY A list of lines formatted as
INT

This indicates the number of rows (equal to the number of
columns) in the matrix-valued PSD variable. The number of
lines should match the number stated in the header.

VAR

Construct the scalar variables.

HEADER One line formatted as:
INT INT

This is the number of scalar variables, followed by the number
of conic domains they are restricted to.

BODY A list of lines formatted as
STR INT

This indicates the cone name (see Appendix A), and the num-
ber of scalar variables restricted to this cone. These numbers
should accumulate to the number of scalar variables stated
first in the header. The number of lines should match the
second number stated in the header.

INT
Put integer requirements on a selected subset of scalar variables.

HEADER One line formatted as:
INT

This is the number of integer scalar variables in the problem.

BODY A list of lines formatted as
INT

This indicates the scalar variable index j ∈ J . The number
of lines should match the number stated in the header.

Remarks:
Can only be used after these keywords: VAR
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PSDCON
Construct the PSD constraints.

HEADER One line formatted as:
INT

This is the number of PSD constraints in the problem.

BODY A list of lines formatted as
INT

This indicates the number of rows (equal to the number of
columns) in the matrix-valued affine expression of the PSD
constraint. The number of lines should match the number
stated in the header.

Remarks:
Can only be used after these keywords: PSDVAR, VAR

CON
Construct the scalar constraints.

HEADER One line formatted as:
INT INT

This is the number of scalar constraints, followed by the num-
ber of conic domains they restrict to.

BODY A list of lines formatted as
STR INT

This indicates the cone name (see Appendix A), and the num-
ber of affine expressions restricted to this cone. These numbers
should accumulate to the number of scalar constraints stated
first in the header. The number of lines should match the
second number stated in the header.

Remarks:
Can only be used after these keywords: PSDVAR, VAR

OBJFCOORD

Input sparse coordinates (quadruplets) to define the symmetric matrices, F obj
j , as used in the

objective.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT INT INT REAL

This indicates the PSD variable index j ∈ J PSD, the row
index, the column index and the coefficient value. The number
of lines should match the number stated in the header.
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OBJACOORD

Input sparse coordinates (pairs) to define the scalars, aobjj , as used in the objective.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT REAL

This indicates the scalar variable index j ∈ J and the coef-
ficient value. The number of lines should match the number
stated in the header.

OBJBCOORD

Input the scalar, bobj , as used in the objective.

HEADER None.

BODY One line formatted as:
REAL

This indicates the coefficient value.

FCOORD

Input sparse coordinates (quintuplets) to define the symmetric matrices, Fij , as used in the

scalar constraints.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT INT INT INT REAL

This indicates the scalar constraint index i ∈ I, the PSD
variable index j ∈ J PSD, the row index, the column index
and the coefficient value. The number of lines should match
the number stated in the header.

ACOORD

Input sparse coordinates (triplets) to define the scalars, aij , as used in the scalar constraints.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT INT REAL

This indicates the scalar constraint index i ∈ I, the scalar
variable index j ∈ J and the coefficient value. The number of
lines should match the number stated in the header.
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BCOORD

Input sparse coordinates (pairs) to define the scalars, bi, as used in the scalar constraints.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT REAL

This indicates the scalar constraint index i ∈ I and the coef-
ficient value. The number of lines should match the number
stated in the header.

HCOORD

Input sparse coordinates (quintuplets) to define the symmetric matrices, Hij , as used in the

PSD constraints.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT INT INT INT REAL

This indicates the PSD constraint index i ∈ IPSD, the scalar
variable index j ∈ J , the row index, the column index and
the coefficient value. The number of lines should match the
number stated in the header.

DCOORD

Input sparse coordinates (quadruplets) to define the symmetric matrices, Di, as used in the

PSD constraints.

HEADER One line formatted as:
INT

This is the number of coordinates to be specified.

BODY A list of lines formatted as
INT INT INT REAL

This indicates the PSD constraint index i ∈ IPSD, the row
index, the column index and the coefficient value. The number
of lines should match the number stated in the header.

CHANGE
Start of a new instance specification based on changes to the previous.

HEADER None.

BODY None.

Remarks:
Can be interpreted as the end of file when the hotstart-sequence is unsupported or undesired.

16



C Examples

C.1 Linear, second-order and semidefinite cones

The conic optimization problem (2), has a semidefinite cone, a quadratic cone
over unordered subindices, and two equality constraints.

minimize

〈 2 1 0
1 2 1
0 1 2

 , X1

〉
+ x1

subject to

〈 1 0 0
0 1 0
0 0 1

 , X1

〉
+ x1 = 1.0 ,

〈 1 1 1
1 1 1
1 1 1

 , X1

〉
+ x0 + x2 = 0.5 ,

x1 ≥
√
x2
0 + x2

2 ,
X1 � 0 .

(2)

The equality constraints are easily rewritten to the conic form, (g0, g1) ∈ {0}2,
by moving constants such that the right-hand-side becomes zero. The quadratic
cone does not fit under the VAR keyword in this variable permutation, however,
as opposed to the minimal working example (1). Instead, it takes a scalar
constraint (g2, g3, g4) = (x1, x0, x2) ∈ Q3, with scalar variables constructed as
(x0, x1, x2) ∈ R3. Its formulation in the CBF format is thus as written in
verbatim.

# File written using this version of the Conic Benchmark Format:

# | Version 2.

VER

2

# The sense of the objective is:

# | Minimize.

OBJSENSE

MIN

# One PSD variable of this size:

# | Three times three.

PSDVAR

1

3

# Three scalar variables in this one conic domain:

# | Three are free.

VAR

3 1

F 3

# Five scalar constraints with affine expressions in two conic domains:
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# | Two are fixed to zero.

# | Three are in conic quadratic domain.

CON

5 2

L= 2

Q 3

# Five coordinates in F^{obj}_j coefficients:

# | F^{obj}[0][0,0] = 2.0

# | F^{obj}[0][1,0] = 1.0

# | and more...

OBJFCOORD

5

0 0 0 2.0

0 1 0 1.0

0 1 1 2.0

0 2 1 1.0

0 2 2 2.0

# One coordinate in a^{obj}_j coefficients:

# | a^{obj}[1] = 1.0

OBJACOORD

1

1 1.0

# Nine coordinates in F_ij coefficients:

# | F[0,0][0,0] = 1.0

# | F[0,0][1,1] = 1.0

# | and more...

FCOORD

9

0 0 0 0 1.0

0 0 1 1 1.0

0 0 2 2 1.0

1 0 0 0 1.0

1 0 1 0 1.0

1 0 2 0 1.0

1 0 1 1 1.0

1 0 2 1 1.0

1 0 2 2 1.0

# Six coordinates in a_ij coefficients:

# | a[0,1] = 1.0

# | a[1,0] = 1.0

# | and more...

ACOORD

6

0 1 1.0

1 0 1.0

1 2 1.0

2 1 1.0

3 0 1.0

4 2 1.0

# Two coordinates in b_i coefficients:

# | b[0] = -1.0

# | b[1] = -0.5

18



BCOORD

2

0 -1.0

1 -0.5

C.2 The exponential cone

The conic optimization problem (3) has one equality constraint, one quadratic
cone constraint and one exponential cone constraint.

minimize x0 − x3

subject to x0 + 2x1 − x2 ∈ {0},5.0
x0

x1

 ∈ Q3,x2

1.0
x3

 ∈ EXP.

(3)

The nonlinear conic constraints enforce
√
x2
0 + x2

2 ≤ 5 and x3 ≤ log(x2). Its
formulation in the CBF format is written in verbatim.

# File written using this version of the Conic Benchmark Format:

# | Version 2.

VER

2

# The sense of the objective is:

# | Minimize.

OBJSENSE

MIN

# Four scalar variables in this one conic domain:

# | Four are free.

VAR

4 1

F 4

# Seven scalar constraints with affine expressions in three conic domains:

# | One is fixed to zero.

# | Three are in conic quadratic domain.

# | Three are in exponential cone domain.

CON

7 3

L= 1

Q 3

EXP 3
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# Two coordinates in a^{obj}_j coefficients:

# | a^{obj}[0] = 1.0

# | a^{obj}[3] = -1.0

OBJACOORD

2

0 1.0

3 -1.0

# Seven coordinates in a_ij coefficients:

# | a[0,0] = 1.0

# | a[0,1] = 2.0

# | and more...

ACOORD

7

0 0 1.0

0 1 2.0

0 2 -1.0

2 0 1.0

3 1 1.0

4 2 1.0

6 3 1.0

# Two coordinates in b_i coefficients:

# | b[1] = 5.0

# | b[5] = 1.0

BCOORD

2

1 5.0

5 1.0

C.3 Mixing semidefinite variables and linear matrix in-
equalities

The standard forms in semidefinite optimization are usually based either on
semidefinite variables or linear matrix inequalities. In the CBF format, both
forms are supported and can even be mixed as shown in (4).

minimize

〈[
1 0
0 1

]
, X1

〉
+ x1 + x2 + 1

subject to

〈[
0 1
1 0

]
, X1

〉
− x1 − x2 ≥ 0.0 ,

x1

[
0 1
1 3

]
+ x2

[
3 1
1 0

]
−
[

1 0
0 1

]
� 0 ,

X1 � 0 .

(4)

Its formulation in the CBF format is written in verbatim.

# File written using this version of the Conic Benchmark Format:
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# | Version 2.

VER

2

# The sense of the objective is:

# | Minimize.

OBJSENSE

MIN

# One PSD variable of this size:

# | Two times two.

PSDVAR

1

2

# Two scalar variables in this one conic domain:

# | Two are free.

VAR

2 1

F 2

# One PSD constraint of this size:

# | Two times two.

PSDCON

1

2

# One scalar constraint with its affine expression in this one conic domain:

# | One is greater than or equal to zero.

CON

1 1

L+ 1

# Two coordinates in F^{obj}_j coefficients:

# | F^{obj}[0][0,0] = 1.0

# | F^{obj}[0][1,1] = 1.0

OBJFCOORD

2

0 0 0 1.0

0 1 1 1.0

# Two coordinates in a^{obj}_j coefficients:

# | a^{obj}[0] = 1.0

# | a^{obj}[1] = 1.0

OBJACOORD

2

0 1.0

1 1.0

# One coordinate in b^{obj} coefficient:

# | b^{obj} = 1.0

OBJBCOORD

1.0

# One coordinate in F_ij coefficients:

# | F[0,0][1,0] = 1.0

FCOORD
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1

0 0 1 0 1.0

# Two coordinates in a_ij coefficients:

# | a[0,0] = -1.0

# | a[0,1] = -1.0

ACOORD

2

0 0 -1.0

0 1 -1.0

# Four coordinates in H_ij coefficients:

# | H[0,0][1,0] = 1.0

# | H[0,0][1,1] = 3.0

# | and more...

HCOORD

4

0 0 1 0 1.0

0 0 1 1 3.0

0 1 0 0 3.0

0 1 1 0 1.0

# Two coordinates in D_i coefficients:

# | D[0][0,0] = -1.0

# | D[0][1,1] = -1.0

DCOORD

2

0 0 0 -1.0

0 1 1 -1.0

C.4 Optimizing over a sequence of objectives

The linear optimization problem (C.4), is defined for a sequence of objectives
such that hotstarting from one to the next might be advantages.

maximizek gobjk

subject to 50x0 + 31x1 ≤ 250 ,
3x0 − 2x1 ≥ −4 ,
x ∈ R2

+,

(5)

given,
gobj0 = x0 + 0.64x1.

gobj1 = 1.11x0 + 0.76x1.

gobj2 = 1.11x0 + 0.85x1.

Its formulation in the CBF format is written in verbatim.
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# File written using this version of the Conic Benchmark Format:

# | Version 2.

VER

2

# The sense of the objective is:

# | Maximize.

OBJSENSE

MAX

# Two scalar variables in this one conic domain:

# | Two are nonnegative.

VAR

2 1

L+ 2

# Two scalar constraints with affine expressions in these two conic domains:

# | One is in the nonpositive domain.

# | One is in the nonnegative domain.

CON

2 2

L- 1

L+ 1

# Two coordinates in a^{obj}_j coefficients:

# | a^{obj}[0] = 1.0

# | a^{obj}[1] = 0.64

OBJACOORD

2

0 1.0

1 0.64

# Four coordinates in a_ij coefficients:

# | a[0,0] = 50.0

# | a[1,0] = 3.0

# | and more...

ACOORD

4

0 0 50.0

1 0 3.0

0 1 31.0

1 1 -2.0

# Two coordinates in b_i coefficients:

# | b[0] = -250.0

# | b[1] = 4.0

BCOORD

2

0 -250.0

1 4.0

# New problem instance defined in terms of changes.

CHANGE

# Two coordinate changes in a^{obj}_j coefficients. Now it is:

# | a^{obj}[0] = 1.11

# | a^{obj}[1] = 0.76
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OBJACOORD

2

0 1.11

1 0.76

# New problem instance defined in terms of changes.

CHANGE

# One coordinate change in a^{obj}_j coefficients. Now it is:

# | a^{obj}[0] = 1.11

# | a^{obj}[1] = 0.85

OBJACOORD

1

1 0.85
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